Nov 29

Influencia de la corriente de pulverización de plasma sobre las características microestructurales y el comportamiento tribológico del recubrimiento de Cr2O3 pulverizado por plasma

En este estudio se investigó el impacto de la corriente de pulverización variable sobre el rendimiento tribológico y las propiedades microestructurales para el recubrimiento del Cr2O3. La pulverización con plasma atmosférico (PPA) se usó como la técnica para depositar recubrimientos de Cr2O3 sobre acero de grado Q235 (equivalente al acero dulce ASTM A36). Las muestras recubiertas se caracterizaron usando microscopía óptica (MO), microscopía electrónica de barrido (MEB), espectroscopia de energía dispersiva (EED), probadores de adherencia y probadores de microdureza. Las pruebas se llevaron a cabo en medios ambientales y secos utilizando una configuración de pin en placa contra el cuerpo de carburo de tungsteno (WC) (pin/stylus) para una carga constante. Se encontró que las muestras rociadas con una corriente más alta tenían un mejor enlace adhesivo y una mejor resistencia al desgaste por erosión, también tenían menor pérdida de desgaste y menor porcentaje de porosidad. Además, se mejoró la dureza casi 10 veces del material base en comparación con muestras de corriente más baja.


Correctly acknowledging the primary funders and grant IDs of your research is important to ensure compliance with funder policies. We could not find any acknowledgement of funding sources in your text. Is this correct?“Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact immediately prior to returning your corrections.”Correctly acknowledging the primary funders and grant IDs of your research is important to ensure compliance with funder policies. We could not find any acknowledgement of funding sources in your text. Is this correct?“Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact immediately prior to returning your corrections.”Ceramics and ceramic coatings have a good reception for various industrial application because of their impeccable qualities of inertness under high temperatures, high strength, high hardness, wear resistance and resistance to both oxidation and corrosion at elevated temperatures. Ceramics have been used as composites in metallic matrix formation or comfortably applied as surface coatings because their production routes in bulk is a challenge, especially due to the intrinsic defects encountered during manufacturing [1–3]. Among the commonly used ceramics is sprayed coatings, which is an excellent candidate for functional and structural coating applications for wear [4], friction and corrosion protection [5]. Industrial applications of sprayed coatings is vast and wide in mining, textile, chemical, automotive, aerospace, marine structures and shipbuilding fields [6–8].Atmospheric Plasma Spraying (APS)has been used in spraying most refractory materials which are characterized with high hardness and high melting points[9]. which is a hard ceramic material with melting temperatures of about 2350°C, can be easily sprayed by APS whose plasma jet temperatures go above 2600°C, which is generally above most melting points of many ceramic materials[10,11]. APS coatings typically have inherent defects such as pores, microcracks, unmolten and semi-molten particles [11,12]. It is therefore imperative to minimize these defect levels to realize a functional coating. The microstructure and properties of any sprayed coating depends on the type of feedstock, whether wire or powder [13], the nature in which it is provided whether conventional micronized, nanosized or in a solution/suspension form [14] and the process spraying parameters used to deposit the feedstock [13,15–17]. For all engineering application, the plasma sprayed coating must possess good adhesion between the coating/substrate interface and cohesion between the build-up layers [11,14,18].

Depending on the functionality of such high quality coating, the intrinsic defects must be curtailed. Common defects in plasma sprayed coating are cracks from residual stress relaxation [18–20] and interlamellar pores between layered splats/substrate or globular pores from unmolten or partially molten particles [21]. The integrity of any plasma sprayed coating is to have as little or no defect at all. A compromise is usually reached at by having the correct particle size distribution and optimizing the particle injection conditions[22].

Many of the research works have been done to optimize the spraying parameters to achieve good functional coatings. This has been done both experimentally and empirically using mathematical modeling [16,23,24]. With these, surface engineering industry has developed and made substantial strides towards achieving ideal coatings.

The purpose of this investigation is to study the microstructure of plasma sprayed coatings and the effects that varying spraying current has on the hardness and tribological behaviour of the coatings under constant load and ambient environment. APS coating was deposited on Q235 steel substrates without pre depositing bonding coat. Friction/erosion tests were done using a Universal mechanical Test (UMT TriboLabTM) platform. Microhardness was also carried out using HXD-100 TMC/LCD Microhardness tester. Worn surfaces were examined using OM and analysis of results from bond strength were also studied. The splat size and porosity were measured from SEM micrographs, using image-J software. The porosity of the sprayed coatings were evaluated using image analysis. The discussion here involves the microstructural analysis using XRD, SEM and EDS, with tribological behaviour examination in terms of microhardness, adhesion/cohesion strength and friction/wear characterization.

Experimental details, materials and methods

In this study, commercially available powder (Metco 6156) was used as the coating material. Fig. 1 shows the morphology of the as received powder under scanning electron microscope (SEM) with particle sizes in the range of -35 to +15μm. The feedstock powder was manufactured by sintering and crushing and screened which resulted to blocky and smooth particles with irregular and angular shapes.

SEM micrograph of powder as received.
Figure 1.

SEM micrograph of powder as received.


Table 1 Shows the characteristics of the as provided feedstock powder.

Table 1.

characteristics of the feedstock powder used for coating.

Chromium oxide powder(Metco 6156)
Composition 99.7—- (all at a 0.1 max)
Production method Blended
Morphology Irregular and blocky
Particle size -35 to +15μm.

The chemical composition of the as received feedstock which is shown in Table 1 gives the percentage constitution as provided by Metco. Clearly, this feedstock of chromium oxide has 99% purity with other additives alloy elements.

Atmospheric plasma spraying system was used to deposit coatings without pre-depositing bond coat. The chemical composition for the powder was confirmed by an EDX analysis as pure, as is displayed in Fig. 2.

XRD spectra of the feedstock powder as received. The XRD spectra for chromium oxide feedstock powder as received.
Figure 2.

XRD spectra of the feedstock powder as received.

The XRD spectra for chromium oxide feedstock powder as received.


The substrate used in this work was a commercially available plain carbon structural steel grade (Q235B), equivalent of ASTM A36 (Bal.Fe-0.20C-0.35Si-1.40Mn-0.045P-0.045P) which is commonly used in construction and engineering welded structures. In the Chinese market, it is commonly used in building construction and marine structures for example, in boilers, containers, connecting rods, ferrules, brackets and high voltage transmission towers, etc.[25]. The substrate dimensions which were used in this work: 10mm × 10mm × 5mm, 20mm × 20mm × 5mm, 35mm × 35mm × 5mm and 42mm × 30mm × 5mm.

Substrates were cleaned ultrasonically in an alcohol bath to remove grease and dirt thereafter grit-blasted on one side before deposition of the coating. Corundum, grit size of 40#-80# mesh was used to roughen the surfaces and the mean roughness of the substrate after grit blasting was in the range of 2.5 to 3.0μm, this was confirmed by a surface roughness tester.

A commercial APS Thermal Coating System (UniCoatProTM with JAM-1040 junction and monitoring unit, TWIN-140 powder feeder and F4-MB-XL-6mm spraying gun, controlled by a robot IRB 1400, Sulzer Metco Switzerland) available at Shanghai Maritime University, China, was used to deposit coating with thickness of 150-200μm. The spray parameters considered are shown in Table 2 from previous documented works [22] and our laboratory studies[26,27]. The predominant factors contributing significantly on the performance of APS chromium coatings were found to be spraying power/Current (P in Kw, A), gas flow rate (Primary and Secondary, here denoted G in lpm), standoff distance (S in mm), powder feed rate (F in gpm) and carrier gas flow rate (C in lpm). The above named spray process parameters greatly influence the microstructural properties of any coating and hence its application. It is therefore paramount to find optimum levels of these variables to achieve optimal characteristics of the coatings in terms of hardness, low porosity, good adhesion properties and reduced corrosion prevalence. Different combination of APS spray parameters were used during the trial runs. The criteria for working limits were reached at by ensuring the absence of coating defects like unmelted powder particles, cracks, and large porosity, poor adhesion on the coatings and solidified inclusions within the columnar crystals. The torch was operated by a robot arm with a constant speed of 1000mm/s and the meander spacing at 6mm. Carrier gas rate was maintained constant at 4.0 l/min at a pressure of 0.30Mpa. Preheating was done by two cycles before spraying. Sample cooling were realized by two compressed air jets with constant pressure of 4 bars a nozzle diameter of 3mm parallel to the plasma plume. Table 2. Shows the process parameters that were used during optimization.

Table 2.

Process parameters.

Factors Notations Units Lowest (-2) Low (-1) Middle (0) High (+1) Highest (+2)
Power P kW 500 540 600 660 750
Primary gas flow rate G lpm 30(3.5) 35(4.2) 42.5(4.75) 50(5.5) 55(6)
Stand-off distance S mm 80 95 105 125 130
Powder feed rate F gpm 25 30 35 43 45
Carrier gas flow rate C lpm 3 4 5 6 7

Table 3 shows the adopted spray parameters conditions.

Table 3.

Spray parameters after optimization.

S/No Arc- Current (A) Primary gas flow rate Ar(L/min) Secondary gas flow rate H2(L/min) Powder feed rate (g/min) SOD (mm)
1 450 40 5 30 110
2 500 40 5 30 110
3* 550 40 5 30 110
4 600 40 5 30 110
5* 650 40 5 30 110

Key: * The samples that were considered in the discussion of for this work.

The microstructure and composition distribution of the coatings were characterized by scanning electron microscopy (SEM, Hitachi TM3030, Tokyo, Japan) and Energy-dispersive X-ray spectroscopy (EDS, Oxford Swift 3000, Oxford, UK). The phase composition of specimens was analyzed by X-ray diffraction (XRD, Rigaku Ultima IV, Tokyo, Japan) with Cu-Kα radiation (λ= 1.54 A) operated at 40kV and 20mA. The diffraction angles (2θ angle) was set in the range from 20° to 100°. The microhardness of the coatings (Vickers scale) was measured using HXD-100 TMC/LCD Microhardness tester (Shanghai Taiming Optical Instrument Co, China) on the polished cross-sections using an indentation load of 300g with a dwell time of 15s and an objective magnification of X40..

Adhesion bond strength investigation was done in accordance to the procedure from ASTM C633 standard. The tests were accomplished using a portable BGD digital pull-off adhesion tester. This tester measures the amount of tensile force required to pull-off a coating of specified dimensions from the substrate using hydraulic pressure. The pressure is displayed on a digital LCD and represents the coating’s strength of adhesion to the substrate. It evaluates the adhesion (pull-off strength) of coating by determining the greatest tensile pull-off force that it can bear before detaching. The recorded results represents averages from five measurements for each kind of coating.

The coated samples were prepared for constant load scratch test. Surfaces of each samples were subjected to sliding wear tests on a pin-on-plate configuration type against tungsten carbide (WC) counter body (pin). 35μm stylus was used on a Universal mechanical Test (UMT TriboLabTM) platform. 50N load was used at constant set velocity of 5 m/s for a period of 900s with a reciprocating stylus configuration movement. The two coatings 550A and 650A sample were used in the friction test. The substrate was also used to compare the scratch test of the two coatings. The procedures were carried out in ambient air, at 25? room temperature and 45% humidity.

Results and discussionsMicrostructure

The microstructures of coatings 550A and 650A investigated are as in Fig. 3(a) and Fig. 3(b). The microstructures consisted of spreading splats forming lamella structures with intermediate oxide layers. Pores, cracks, inclusions, unmolten and semi molten particles were observed which are typical for a microstructure coating prepared by atmospheric plasma spraying. More pores, cracks and unmolten particles were prevalent for 550A coating than for 650A coating. Lower spraying current for 550A coating, occasioned less heat to completely breakdown the powder particles during the plasma stage. This led the spraying plume to consist of unmolten and semi molten particles. As subsequent layers are formed, interlocking between unmolten particles led to formation of pores and regions of unmolten particles. For the case of coating 650A, there was fully molten feedstock. This necessitated homogenously spreading lamella structure. The presence of pores and unmolten particles was less for this case. There were some microcracks that could have resulted from residual stresses during solidification and cooling.

SEM micrographs of chromium oxide coatings prepared by varying current. (a) 550A coating (b) 650A coating.
Figure 3.

SEM micrographs of chromium oxide coatings prepared by varying current. (a) 550A coating (b) 650A coating.


Porosity evaluation of SEM micrographs for the two coatings was carried out by image analysis using ImageJ software. Coatings 550A (Fig. 3a.) had porosity of 8.% with bigger pores and irregular in shape. Coating 650A (Fig. 3b.) had porosity of 4.%, predominantly nearing the edges. The main base layer for both coatings was Cr as can be seen from EDS layered images in Fig. 4(I) and Fig. 4(II). From fig. 4(I) for coating 550A, two distinct layer can be clearly seen. The Cr layer forms the base of coating. O layer comes in between the Cr layer and gives a vivid representation how coating occurred. Irregular surface appeared which caused interlocking of layers hence porosity was evident. Fig. 4(II) shows EDS layered image for coating 650A which is more homogenous, with Cr as the base layer and O as the top layer. It is evident that both layers completely cover the whole substrate surface with very few discontinuities compared to the case of coating 550A.

SEM micrographs of EDS layered coatings of chromium oxide coatings prepared by varying current (I) 550A and (II) 650A;(a) combined layer (b) Cr (c) O.
Figure 4.

SEM micrographs of EDS layered coatings of chromium oxide coatings prepared by varying current (I) 550A and (II) 650A;(a) combined layer (b) Cr (c) O.


Porosity has a direct correlation with the tensile bond strength and hardness of the coating. Coating is known for its hard coatings which is commonly used for wear and abrasive protection.

The microhardness and indentation examination was carried out on the cross-sectional surface of the coatings. The cross-sections were first prepared by polishing and cleaning to remove any dirt ensuring no damage to the coatings. Lower indentation loads were chosen which could not initiate cracks or micro-cracking on the in prints at the edges of the coating surface [28], this was to ensure results obtained were reliable. A HXD-100 TMC/LCD Microhardness tester was used to get the microhardness values of the coatings. A load of 300gf was used with a 15seconds dwell time. Vickers microhardness values were taken and average values for each sample is illustrated in Fig. 5. Vickers microhardness values for the sprayed coatings 550A and 650A are 1496 HV300g and 1762 HV300g respectively. From earlier discussion, 550A had a higher porosity level of 8. while 650A had 4. There is a relationship between the presence of pores and microhardness of a coating, it has been argued that presence of pores in a coating provide weak sites where particle bonding could be weakest [29]. These gives way during any small load application on the surface coating hence compromising on the integrity of the surface quality in terms of its hardness. In cases of abrasion wear, pores can also act as the points wear fractures starts. Regardless of variation between the hardness values for coatings 550A and 650A, their values were 10 folds that of the substrate. Figure 6

Microhardness of plasma sprayed chromium oxide prepared by varying current compared to the substrate's microhardness.
Figure 5.

Microhardness of plasma sprayed chromium oxide prepared by varying current compared to the substrate’s microhardness.

Photograph showing the pull off adhesion test. (a) Dolly glued to the coating surface (b) dolly separated from the coating. Showing part of the coating left on the dolly while the other part left on the substrate.
Figure 6.

Photograph showing the pull off adhesion test. (a) Dolly glued to the coating surface (b) dolly separated from the coating. Showing part of the coating left on the dolly while the other part left on the substrate.



The bond strength for coating/substrate interface was measured using pull-off adhesion method. The final bonding strength values were taken from the average bond strength after taking several measurements for two samples tested under the same conditions. Fig. 7 shows work piece before and after the tensile bond strength test. A small section of the coating remained glued to the dolly while the other part remained on the substrate. This was a typical adhesive failure mode as prescribed by ASTM C633 standard [30]. There was a fracture between the coating/substrate interfaces, with no indications of fracture between the layers of coatings.

Optical Microscopy images of (a) coating 550A (b) coating 650A and (c) Substrate after scratch tests in ambient dry conditions using constant load.
Figure 7.

Optical Microscopy images of (a) coating 550A (b) coating 650A and (c) Substrate after scratch tests in ambient dry conditions using constant load.


Table 4 gives a summary of the results indicating the averaged bond strengths and the mechanism of failure encountered.

Table 4.

Averaged tensile bond strength tests results of the coatings.

Coating Thickness (μm) Tensile bondstrength (Mpa) Type of failure
550A 348 12.24 Adhesive
650A 391 23.60 Adhesive

It is apparent that the bonding strength of the coatings increased with the increase in spraying current. This is because, increasing the spraying current increases the temperature of particles within the plasma region.

Figure 4 Adhesion/cohesion testing pieces (a) before (b) afterThe high temperature guarantees complete melting of powders leading to uniform coating with fewer pores, hence low porosity. This is evident from porosity results. Besides, well bonded and densely coated surface gives a higher tensile bonding strength compared to one that has a larger percentage of porosity[29]. Porosity is one of the parameters that influence the tensile bond strength of a coating. It is in agreement that a coating with higher porosity level; 550A coating had a lower bonding strength. The presence of pores and unmelted particles act as weak spots for the commencements of fracture and its propagations. Table 4 gives a summary of the results indicating the bond strengths and the mechanism of failure encountered. Figure 8

Graphical representations showing wear loss correlation with (a) Bond strength and wear loss against porosity (b) Wear loss and microhardness against coefficient of friction.
Figure 8.

Graphical representations showing wear loss correlation with (a) Bond strength and wear loss against porosity (b) Wear loss and microhardness against coefficient of friction.


Fig. 9 show the amount of wear loss for the two coatings 550A, 650A and substrate metal for a constant normal load of 50N in dry ambient condition. The amount of wear loss was highest for the substrate and lowest for 650A coating. It is evident that coating provided a wear resistant protection for the base metal. For the cases of the two plasma sprayed coatings for, coating 650A performed better than coating 550A. The previous discussions regarding hardness and porosity level also agree with the tribological characteristics that a harder surface with lower porosity percentage provides a better wear resistant coating.

Comparing the two coatings 550A and 650A, wear products (particles) found between the coatings and the counter body (WC) played a big role in propagating more wear on the coating. It was found that as debris were released from the coating surface, some got embedded, welded on the counter body and moved along with the stylus to cause further wear. This agrees with the previous findings that any debris or loose particles on the surface of a coating could necessitate further abrasion and erosion on the surface of any coating [31]. This is particularly true where porosity level is high. The presence of pores could provide weak notches from which fractures are initiated from. Harder surfaces, 650A with less pores had low wear loss.

Fig. 11 describes the friction coefficient variations against the two coatings 550A and 650A compared with that of the base metal in dry ambient environment under constant load. With load constant, the friction coefficient values were recorded for period of 600seconds. The best line of fit was used to obtain the values of coefficient of friction for the three samples. The substrate had the highest value of friction coefficient of 0.6778, followed by coating 550A with 0.50498. Coating 650A, had the lowest value of friction coefficient of 0.34815. The friction coefficient values for coating 550A was higher than for 650A, denoting that there was more friction on 550A because of the presence of pores and unmolten particles. This resulted to plastic deformation of the coating surface. The abrasion products together with further scraping of the surface led to higher values for friction coefficient. It is clear that the two coatings had better wear resistance compared to the substrate metal. Additionally, as it is evident from fig. 10, the amount of wear loss for coating 550A is higher compared with coating 650A. Apparently the erosion was higher for softer coating and the wear products played a major role to further the abrasion activities.

Optical microscopy images observations of the worn-out samples which were tested under ambient dry conditions are presented in Fig. 12. The occurrences of smooth tracks on the surface of the substrate, (Fig. 12 c.) indicates that there abrasion was highest. Subsequent wear particles which were embedded on the counter body’s tip continued to abrade the surface hence the appearance as seen on the optical microscopy images. For 550A coating (Fig. 12 a.), it was observed that the surface topography had the most deformation comparing the two coatings.

The eroded surfaces depicted uniform scraping off of the coating surface which was further aided by wear products as the cycle of loading continued. There was plastic deformation accompanied with delamination of the coating. It has been argued elsewhere in literature that high level of porosity facilitate abrasion wears but in the same instance reduces any excessive internal stresses to subsequent layers of coating [32]. For 650A coating (Fig. 12 b.), it was observed that failure mechanism was more of chipping since the coating surface was harder compared to the 550A coating. This occurred with the increasing number of loading cycles. Plastic deformation is common with hard surfaces and as evident from the images, not the whole length of the sample was scraped off. For the substrate surface (Fig. 12 c.), there was uniform deformation that started as elastic but gradually changed to plastic deformation with increase in loading cycles.

Correlation of the results and the discussion

Fig. 13 depicts the relationship that bond strength and wear loss has in regards to the porosity of a coating. Coatings 550A and 650A have been analysed in the proceeding discussions with percentage porosities as 8% and 4% porosity respectively. As the porosity of coating increases, the amount of wear loss increases. Porosity presents weak sites and in the instances of frictional forces, more material from the surface of the coating is detached via abrasion. Bond strength and porosity have an inverse relationship. Coating with higher bond strength have lower porosity level and vice versa. This is because high bond strength coating means that the coating surface has closely packed and securely bonded elements that form the coating. To separate such a coating from the substrate, a higher tensile force is desirable. Fig. 14 represents the correlation that wear loss and microhardness has with respect to the friction coefficient of coating (550A and 650A). It was observed that as friction coefficient (COF) increases wear loss also increases while in the same instance microhardness reduces. A coating with lower COF had higher microhardness value with least amount of wear loss. The reason is the same as discussed above, coating surface that is compact with high bonding strength is hard to abrade hence higher hardness value. Such a coating has the best wear resistance properties.


A set of coatings were prepared by atmospheric plasma spraying varying the spraying current with gas flow rate (primary and secondary gases), powder fee rate and standoff distance all kept constant. From the study we concluded that varying the spraying current affected the microstructure, microhardness and tribological characterization of the coatings. The following findings can be derived from the work:

Microstructural observations showed the presence of pores, microcracks, unmolten and semi-molten particles on the coatings. The amount of defects observed on 550A coating were higher than for 650A coating. As assigned earlier, 550A coating and 650A coatings represents coating prepared when the spraying currents were 550A and 650A respectively. The microstructure was more compact and well layered when a higher spraying current was used.

The corresponding microhardness value obtained for 650A coating, 550A and substrate were 1763HV, 1497HV and 158.HV. Microhardness values increased with increase in spraying current which necessitated a better compacted coating with lower porosity percentage. Moreover, the bond strengths of the coatings were also directly related to the tribological characterization of the coatings which are controlled by the spraying current.

For the case of tribological characterization, coating produced under higher spraying current experienced the least wear loss with the best frictional resistance capabilities. Wear losses gradually increased with the reduction in spraying current.


This work was supported by the National Natural Science Foundation of China Grant No. 51572168


The authors would like to acknowledge Prof Wei Haijun and Mr. Li Hong of Tribology and Oil analysis laboratory of Shanghai Maritime University, where we carried our tribology exercise.


M. Hashemi, N. Parvin, Z. Valefi.
Effect of microstructure and mechanical properties on wear behavior of plasma-sprayed Cr2O3-YSZ-SiC coatings.
Ceramics International, 45 (2019), pp. 5284-5296

G. S Rohrer, M. Affatigato, M. Backhaus, R. Bordia, H. M Chan, S. Curtarolo, A. Demkov, J. Eckstein, K. T Faber, J. Garay, Y. Gogotsi, L. Huang, L.E. Jones, S. Kalinin, R.J. Lad, C.G. Levi, J. Levy, J.P. Maria, L. Mattos, K. Weil, Challenges in Ceramic Science: A Report from the Workshop on Emerging Research Areas in Ceramic Science, Journal of the American Ceramic Society 95 (2012) 3699-3712.

W.M. Rainforth.
The wear behaviour of oxide ceramics-A Review.
Journal of Materials Science, 39 (2004), pp. 6705-6721

E. Marin, A. Lanzutti, M. Nakamura, M. Zanocco, W. Zhu, G. Pezzotti, F. Andreatta.
Corrosion and scratch resistance of DLC coatings applied on chromium molybdenum steel.
Surface and Coatings Technology, 378 (2019), pp. 124944

X. Pang, K. Gao, H. Yang, L. Qiao, Y. Wang, A. Volinsky.
Interfacial Microstructure of Chromium Oxide Coatings.
Advanced Engineering Materials, 9 (2007), pp. 594-599

A. Cellard, V. Garnier, G. Fantozzi, G. Baret, P. Fort.
Wear resistance of chromium oxide nanostructured coatings.
Ceramics International, 35 (2009), pp. 913-916

P.A. Bagde, S. Sapate, R. Khatirkar, N. Vashishtha, S. Tailor.
Friction and Wear Behaviour of Plasma Sprayed Cr2O3-TiO2 Coating.
Materials Research Express, 5 (2018),

X. Pang, K. Gao, H. Yang, L. Qiao, Y. Wang, A.A. Volinsky.
Interfacial Microstructure of Chromium Oxide Coatings.
Advanced Engineering Materials, 9 (2010), pp. 594-599

X. Pang, K. Gao, A. Volinsky.
Microstructure and Mechanical Properties of Chromium Oxide Coatings.
Journal of Materials Research – J MATER RES, 22 (2007),

M.E.a.D. Kolar, Thermal Spraying of Oxide Ceramic and Ceramic Metallic Coatings, Interchopen 2012.

P. Fauchais, G. Montavon.
Plasma Spraying: From Plasma Generation to Coating Structure.
Advances in Heat Transfer, pp. 205-344

M.R. Dorfman.
Chapter 22 – Thermal Spray Coatings.
Handbook of Environmental Degradation of Materials (Third Edition), pp. 469-488

H. Yao, Z. Zhou, G. Wang, D. He, K. Bobzin, L. Zhao, M. Oete, T. Königstein.
Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings.
Journal of Materials Engineering and Performance, 26 (2017), pp. 1108-1113

S. O, B. A, F. Gärtner, A. Kirsten, J. Voyer, H. Kreye, Influence of Process Parameters on the Quality of Thermally Sprayed X46Cr13 Stainless Steel Coatings, Journal of the Brazilian Society of Mechanical Sciences and Engineering 26 2004.

G.E. Kim, V.K. Champagne, M. Trexler, Y. Sohn.
20 – Processing nanostructured metal and metal-matrix coatings by thermal and cold spraying.
Nanostructured Metals and Alloys, pp. 615-662

D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian.
Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology.
Progress in Natural Science:Materials International, 22 (2012), pp. 468-479

刘顾, 汪刘应, 陈桂明, 魏皖宁, 华绍春, 朱二雷, Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings, Plasma Science and Technology 13(4) (2011) 474-479.

P. Araujo, D. Chicot, M. Staia, J. Lesage.
Residual stresses and adhesion of thermal spray coatings.
Surface Engineering, 21 (2005), pp. 35-40

I. Kraus, N. Ganev, G. Gosmanová, H.-D. Tietz, L. Pfeiffer, S. Böhm.
Residual Stresses in Plasma-Sprayed Coatings Al2O3.
Advanced Performance Materials, 4 (1997), pp. 63-69

Z. Gan, H.W. Ng, A. Devasenapathi.
Deposition-induced residual stresses in plasma-sprayed coatings.
Surface and Coatings Technology, 187 (2004), pp. 307-319

H. Wu, H.J. Li, Q. Lei, Q.G. Fu, C. Ma, D.J. Yao, Y.J. Wang, C. Sun, J.F. Wei, Z.H. Han, Effect of spraying power on microstructure and bonding strength of MoSi 2 -based coatings prepared by supersonic plasma spraying, Applied Surface Science 257(13) (2011) 5566-5570.

S. Yugeswaran, V. Selvarajan, M. Vijay, P.V. Ananthapadmanabhan, K.P. Sreekumar.
Influence of critical plasma spraying parameter (CPSP) on plasma sprayed Alumina–Titania composite coatings.
Ceramics International, 36 (2010), pp. 141-149

V. Teixeira.
Numerical analysis of the influence of coating porosity and substrate elastic properties on the residual stresses in high temperature graded coatings.
Surface and Coatings Technology, 146–147 (2001), pp. 79-84

G. Pinto, F. Silva, J. Porteiro, J. Mínguez, A. Baptista.
Numerical Simulation Applied to PVD Reactors: An Overview.
Coatings, 8 (2018), pp. 410

L.A. Anyang General International Co., Q235 STEEL PLATE EQUIVALENT STEEL STANDARD-ASTM A36. , 2019.(accessed 13/5/2019.).

J.G.L. Odhiambo, W.; Zhao, Y.; Li, C., Porosity and Its Significance in Plasma-Sprayed Coatings. Coatings 2019, 9, 460, Coatings 9(7) (2019).

W.J.-h. WU Yan-peng1, LI Wen-ge, ZHAO Yuan-tao, GU Cai-xiang, YIN Li, Odhiambo J. Gerald, 铝合金表面等离子喷涂Al2O3-3%TiO2 复合涂层工艺参数优化的研究-Optimization of Plasma Spraying Process Parameters for Al2O3-3%TiO2 Composite Coating on Aluminum Alloy Surface Technology 48(6) (2018) 322-331.

J. Alcala, F. Gaudette, S. Suresh, S. Sampath.
Instrumented spherical micro-indentation of plasma-sprayed coatings Materials Science and Engineering A-structural Materials Properties Microstructure and Processing – MATER SCI ENG A-STRUCT MATER, 316 (2001), pp. 1-10

J. Di, W. Liu, L. Xue, Q. Zhou, Y. Yan.
A Dense Cr2O3/Al2O3 Composite Ceramic Coating Prepared by Electrodeposition and Sealing with Al2O3.
Coatings, 9 (2018), pp. 14

A. Vencl, S. Arostegui, G. Favaro, F. Zivic, M. Mrdak, S. Mitrović, V. Popovic.
Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections.
Tribology International, 44 (2011), pp. 1281-1288

V.P. Singh, A. Sil, R. Jayaganthan.
Tribological behavior of plasma sprayed Cr 2 O 3-3%TiO 2 coatings.
Wear, 272 (2011), pp. 149-158

M. Szala, T. Hejwowski, Cavitation Erosion Resistance and Wear Mechanism Model of Flame-Sprayed Al2O3-40%TiO2/NiMoAl Cermet Coatings, Coatings (2018).

Nov 22

El profesor Fernando González, Premio Nacional de Cerámica

El docente de Historia del Arte en la Facultad de Humanidades de Albacete ha sido reconocido por la Asociación Española de Ciudades de la Cerámica (AeCC) en la categoría de Investigación Histórica, Protección y Rehabilitación del Patrimonio Cerámico

Fernando González Moreno, profesor de Historia del Arte en la Facultad de Humanidades de Albacete. – Foto: UCLM
Fernando González Moreno, profesor de Historia del Arte en la Facultad de Humanidades de Albacete, ha sido reconocido por la Asociación Española de Ciudades de la Cerámica (AeCC) con un Premio Nacional de Cerámica, en la categoría de Investigación Histórica, Protección y Rehabilitación del Patrimonio Cerámico, valorando así su trayectoria en el estudio de la cerámica talaverana desde su tesis doctoral Arquitectura e iconografía del retablo cerámico. De la tradición al revival en la azulejería talaverana. El acto de entrega tuvo lugar en Bailén el pasado sábado, 23 de octubre.

La octava edición de los Premios Nacionales 2020 ha incluido entre sus premiados al profesor de la Universidad de Castilla-La Mancha (UCLM) Fernando González Moreno, que imparte docencia en la Facultad de Humanidades de Albacete, de la que además es su decano.

El Premio Nacional de Cerámica, con el que ha sido galardonado en la categoría de Investigación, a propuesta del Ayuntamiento de Talavera, reconoce la trayectoria investigadora del profesor desde su tesis doctoral.

Publicaciones como: Decadencia y Revival en la azulejería talaverana: retablos, altares y paneles del «Renacimiento Ruiz de Luna» (2002); y Renacimientos: la cerámica española en tiempos de Ruiz de Luna (2010) o su trabajo en el comisariado de exposiciones como El Arte Redivivo: I Centenario de la fábrica de cerámica Ruiz de Luna «Nuestra Señora del Prado» (1908-2008) (2008); cocomisariado en aTémpora. 6.000 años de cerámica en Castilla-La Mancha (2018), además de su participación en congresos, jornadas y seminarios nacionales e internacionales, así como el trabajo de redacción de ampliación y desarrollo del programa museológico para el Museo de Cerámica Ruiz de Luna para el Ministerio de Cultura (2010), constituyen parte del trabajo científico del premiado.

El premio en Investigación Histórica, Protección y Rehabilitación del Patrimonio Cerámico se otorga como reconocimiento a aquella persona, institución, entidad o colectivo que haya sobresalido por su tarea de investigación histórica o etnológica sobre la cerámica o alfarería o en acciones de protección, rehabilitación y puesta en valor del patrimonio cerámico.

Nov 15

Industrial Strategy 2021: navigating the perfect storm

Talk about bad timing: one day before Covid19 was declared a global pandemic i n  2020, the EU Commission had published its “New Industrial Strategy for Europe“. The document naturally made no mention of closed borders, disrupted supply chains or anything related to health concerns. Maybe a problem in itself – a strategy without any considerations beyond the blindingly obvious is probably not very fit  for purpose.

So an update became necessary that took into account the implications of a slump in economic growth (6.4%), massive turnover losses by SMEs (60%) and an unprecedented fall in intra-EU trade (24%) – a perfect storm, in other words, for Europe’s economies.  They were already facing the need for a transition towards much more sustainability, including production processes and consumption patterns and vast investments in better (IT) infrastructure and in new skills for workers young and old.

In addition, unfair competition from third countries and market distortions were not tackled because of a lack of trade governance at the global level. When it rains it pours: and so a health pandemic mercilessly laid bare shortcomings and accelerated demands and trends from digitalisation to online work to the need for more diverse and resilient supply chains and production capacities

The EU’s ambition now should not only be to recover from the knocks of the pandemic but to pursue a horizontal industrial policy that again puts Europe in a global leadership position.  Our draft opinion on INT/935 Updating the new industrial strategy therefore starts with the observation that a coherent industrial strategy should be focused on two dimensions: recovery from the pandemic and reconstruction and resilience.

It was noted as a positive feature that the EU still believes industry and manufacturing to be of high importance for the prosperity of its citizens. Shortages in strategic value chains, however, as well as shortages of skilled workers, are undermining European industries’ ability to recover rapidly from the pandemic.

It is crucial that  Member States  and the EU tackle strategic dependencies, including  through reindustrialisation, the  circular economy, trade policy and skills-related measures. They need to do this by involving workers and companies – i.e. the social partners – in creating a shared understanding and a pathway towards the common goal: a far more sustainable and digital economy and society. Skill will be crucial in enabling not only the transition itself but people across Europe to drive and benefit from it and allow people to earn their living wherever they are in the EU.

The European Commission has outlined in its industrial strategy Key Performance Indicators, industrial ecosystems, Scoreboards and Dashboards that it aims to put together, monitor and map to provide useful data for evidence-based decision making. These overviews, such as the Annual Single Market Report  or  the monitoring  of  critical  raw  materials,  are  important  elements in assessing the EU’s industrial strengths and weaknesses.

Nonetheless, all the data in the world will not replace decisive political action or, on their own, re-assert Europe’s global role. Policies must not only be developed but also implemented. SMEs, who are the backbone of our economy, drivers of innovation and represent the bulk of employers, have to be given a favourable framework for growth, which includes a real and functioning single market.

Some of the European Commission’s instruments, such as IPCEIs (Important Project of Common European  Interest)  or  industrial alliances, are very good focal points for joint industrial action and can  provide  the  necessary framework  conditions  for  economic actors  across Europe. To maximise the impact, Europe needs to remain open for investment and trade but simultaneously address unfair competition and market distortions. A seemingly small but nevertheless key element of industrial global  leadership  are European standards: developed by European companies, they offer a crucial gateway for European leadership in manufacturing and should therefore receive greater support and attention.

The update of the Industrial Strategy includes good analyses and assessments as well as good plans and policies. But a strategy without execution is useless. The EESC’s main message therefore remains: sail the course, don’t just chart it!


Sandra Parthie
Member at the European Economic & Social Committee
Rapporteur of the Opinion “Updating the new industrial strategy”
German Economic Institute

Nov 08

Convocatoria de la XV Bienal Internacional de Cerámica de Manises 2022

1/ El Ayuntamiento de Manises convoca la XV BIENAL INTERNACIONAL DE CERÁMICA DE MANISES con el objetivo de fomentar la creación e innovación en los ámbitos de la cerámica artística y del diseño, y de promocionar el nombre de Manises como ciudad ceramista.
  1. Podrán participar, tanto de forma individual como colectiva, personas de cualquier país del mundo. En caso de participaciones colectivas, el grupo elegirá uno o una representante legal, los datos del cual serán las que tendrán que figurar en la solicitud de  inscripción.
  2. Las obras que se presenten, en las dos modalidades y con un máximo de tres, tendrán que ser originales e inéditas, no podrán haber participado en otros concursos y tendrán que estar hechas, en su mayor parte, con materiales cerámicos.
        A) Cerámica artística, de creación libre.
        B) Diseño de producto cerámico, industrial o artesanal, enfocado a piezas de carácter utilitario y/o decorativo, susceptible de ser reproducido industrialmente para la comercialización (orientado a promover la industria cerámica).
En la especialidad de Arte no se admitirán obras que excedan 2 m en la dimensión más grande ni tampoco aquellas que no lleguen a los 0,50 m por unidad. En la especialidad de Diseño las medidas serán libres.
  1. Las inscripciones se harán mediante la plataforma web habilitada a tal efecto:, lugar donde la organización publicará todo aquello relativo al concurso.
  2. Las notificaciones individuales se harán mediante la dirección electrónica facilitada en la solicitud de inscripción y solo de manera excepcional se usará la conexión telefónica.
  3. El plazo de inscripción finalizará el 15 de noviembre de 2021. Las solicitudes constarán del formulario de inscripción, el currículum profesional del autor o autores, 3 fotografías digitales -como máximo- de cada una de las obras, realizadas sobre fondo neutro y con un máximo de 512 kB, más una fotografía personal del autor o autores, en formato JPG y con una resolución adecuada.
  4. Toda la documentación que acompañe las solicitudes de inscripción pasará a formar parte del Archivo Documental de Cerámica Contemporánea del MCM.
  1. El comité de selección, basándose en las imágenes digitales y en la documentación remitida por la persona participante, elegirá las obras finalistas que pasarán a la fase de concurso. Su decisión se notificará a las personas seleccionadas por correo electrónico y publicando la lista en la plataforma web del concurso.
  2. Es responsabilidad de los autores y las autoras el traslado de las obras hasta el MCM. Los gastos derivados del envío de las piezas correrán a cargo de las personas concursantes y la organización solo se encargará de la recepción. En caso de que las obras procedan de un país no perteneciente en la Unión Europea, el artista participante tendrá que pagar los gastos de aduana.
  3. Las obras seleccionadas tendrán que enviarse al Museo de Cerámica de Manises antes de las 15 h del día 14 de febrero de 2022. El incumplimiento de este plazo supondrá su descalificación. En compañía de las obras, los autores y las autoras podrán remitir instrucciones, imágenes y todas aquellas directrices que consideran necesarias para su montaje adecuado.
  4. Es obligación de los autores y las autoras el embalaje correcto de las obras para evitar roturas durante el transporte. La organización no se responsabilizá de los desperfectos que se hayan producido en las piezas como consecuencia de su envío, de forma que no asumirá los gastos de los daños.
  5. Las obras recibidas que presenten roturas inferiores al 5% de su volumen serán restauradas por el Museo de Cerámica de Manises, podrán formar parte de la exposición y figurarán en el catálogo, pero quedarán fuera de concurso y no optarán a premio.
  6. Aunque las obras hayan sido seleccionadas previamente en fotografía, el jurado, una vez observadas físicamente, se reserva el derecho de excluirlas de la exposición si no reúnen alguno de los requisitos solicitados.
  7. Las obras finalistas formarán parte de una exposición desde el día 10 de junio de 2022 hasta el 10 de septiembre de 2022 y figurarán en el catálogo que se editará con motivo de esta Bienal.
  8. La organización tomará las medidas de seguridad necesarias para la conservación de las obras durante la exposición.
  1. La valoración de las obras que tengan que proponerse para pasar a la fase de concurso, corresponderá a un comité de selección. Este comité estará compuesto por un número determinado de personas expertas y profesionales de prestigio reconocido. La coordinadora de la Bienal actuará como secretaria de este comité con voz y voto.
  2. El veredicto del comité de selección será inapelable.
  1. La valoración de las obras que tengan que proponerse para premio corresponderá a un jurado, que estará compuesto por personas expertas y profesionales de prestigio reconocido. El nombre de estas se hará público el día de la entrega de premios. La coordinadora de la Bienal actuará como secretaria de este jurado con voz y voto.
  2. El jurado emitirá un veredicto que será inapelable y propondrá al órgano instructor la resolución que sea procedente a partir de aquel si es necesario.
  3. El jurado podrá proponer, si lo estima conveniente, la concesión de una o varias menciones especiales en cada una de las modalidades de los premios. Igualmente podrá proponer de manera motivada, que los premios queden desiertos.
  1. Todas las obras premiadas pasarán a ser propiedad del Ayuntamiento de Manises e ingresarán en el Museo de Cerámica de Manises a fin de ser conservadas. En el caso de las premiadas en Diseño, los derechos de propiedad industrial continuarán perteneciendo a sus autores y autoras o a sus titulares legales.
  2. Todas las persones participantes ceden a la organización los derechos de imagen para su difusión cultural.
  1. Los artistas y las artistas galardonados se comprometen a asistir al acto de entrega de premios que tendrá lugar el día 10 de junio de 2022.
  2. La organización les proporcionará alojamiento en un hotel de Manises si son de una ciudad de fuera de la Comunidad Valenciana o del país.
  3. En caso de que no puedan asistir, tendrán que delegar en una persona que, en calidad de representante, acudirá al acto para recoger el premio.
Se entregarán premios a las especialidades:
   PREMIO DIPUTACIÓ DE VALÈNCIA, dotado con 3.000 €
   PREMIO CIUDAD DE VÉNISSIEUX para menores de 35 años, dotado con 1.800 €
   PREMIO FUNDACIÓN MUSEO DE MONTELUPO, residencia artística en la ciudad de Montelupo.
  1. A los premiados y las premiadas, como perceptores de subvenciones públicas, se les aplicará las obligaciones que constan en el artículo 14 de la Ley general de subvenciones.
  2. Los premios estarán sujetos a la retención fiscal que corresponda, según la legislación vigente.
  3. Los premios y las personas beneficiarias, serán objeto de publicación de acuerdo con las normas de la Base de datos Nacional de Subvenciones y con la normativa vigente del Ayuntamiento de Manises.
  4. Los premiados y las premiadas en esta edición no podrán volver a presentar obra, en ninguna de las dos especialidades, hasta pasada una edición de la Bienal.
  5. Los artistas y las artistas galardonadas con el primer premio, tanto en la categoría de Arte como en la de Diseño, serán invitados a exhibir sus trabajos en la siguiente edición de la Bienal. Sus muestras formarán parte de las exposiciones paralelas y figurarán en el catálogo correspondiente a aquella edición.
El presupuesto de la convocatoria 2022 ascenderá a la cantidad de 60.000 € que se financiará a cargo de la aplicación presupuestaria 42210-22609, otros gastos  diversos, Bienal de Cerámica, del presupuesto general del
Ayuntamiento de Manises del ejercicio 2022.
Los datos de carácter personal, que se recojan en la solicitud formarán parte de un fichero titularidad del Ayuntamiento de Manises y quedarán sometidas a la protección que establece la Ley Orgánica 15/99, de protección de datos de carácter personal.
1.Por el solo hecho de concursar, se entiende que quién participa acepta todas las condiciones que figuran en la convocatoria. Para todo aquello que no se especifique o para cualquier duda que pudiera derivarse de su interpretación, la organización se reserva la expresa y exclusiva competencia sobre este tema.
2. Las bases reguladoras de la concesión de los premios de la Bienal Internacional de Cerámica de Manises están publicadas en el Boletín Oficial de la Provincia de Valencia, Nº. 156 / 13-8-2021.
La Secretaría de la Bienal de Cerámica de Manises tiene su sede en:
Museo de Cerámica de Manises
Calle del Sagrario, 22. 46940 – Manises (Valencia) España.
Atención telefónica en castellano y valenciano:
(+34) 961 521 044
Atención telefónica en inglés, francés, alemán e italiano:
(+34) 961 52 56 09
Dirección electrónica:
Inscripción: MundoArti

Nov 02

La transferencia de conocimiento, el networking y el liderazgo, grandes protagonistas de la primera edición de Steel Tech

La transferencia de conocimiento, el networking y el liderazgo sostenible han sido los grandes protagonistas de la primera edición de Steel Tech, Congress & Expo, que se ha celebrado del 19 al 21 de octubre y ha estado coorganizado por Siderex, la Asociación Clúster de Siderurgia, y Bilbao Exhibition Centre (BEC).

El certamen, que tiene como objetivo convertirse en el punto de encuentro de referencia del sur de Europa para el sector del acero, ha contado con 576 participantes profesionales visitando los principales espacios, y tiene ya la vista puesta en la segunda edición, que se celebrará entre el 24 y 26 de octubre de 2023.

El certamen cierra su primera edición con las expectativas cumplidas. «Durante los dos días del congreso, nos hemos centrado en tratar de ofrecer una orientación global, analizando soluciones y aplicaciones del acero en sectores cliente y poniendo la vista en el acero del futuro y retos en torno a temáticas muy importantes», afirmó Asier San Millán, director general de Siderex.

A su inauguración acudió el viceconsejero de Industria Gobierno Vasco, Mikel Amundarain, quién destacó que el sector se encuentra en «una rampa de salida» donde la industria y las empresas están mostrando su interés y motivación para dejar atrás los meses de la pandemia y sus consecuencias. Sin embargo, también aseguró que existen «ciertos elementos de distorsión» como son el aumento del coste de la energía, de la materia prima y la logística. «Estamos trabajando junto con Siderex y el resto de clústers para la identificación de distintas medidas que puedan acompañar a corto, medio y largo plazo que permita reducir esos costes energéticos», dijo Amundarain.

Junto al viceconsejero, también asistieron al acto de puesta en marcha de Steel Tech, el director general de UNESID, Andrés Barceló; el presidente de SIDEREX, Carlos Álvarez; el presidente del comité científico del STEEL TECH, Juan José Laraudogoitia y el director general de BEC, Xabier Basáñez. Barceló calificó al aumento de los costes energéticos como «un dolor de cabeza» que se traslada a toda la cadena de valor de la siderurgia y a toda la economía. «No sabemos que va a pasar con la inflación –reconoció– pero nosotros tenemos que mantener el ritmo y el esfuerzo».

Por otro lado, Carlos Álvarez puso en valor el trabajo del clúster Siderex en la búsqueda del incremento de la competitividad del sector siderúrgico, acercando los mercados internacionales a través de acciones de promoción exterior, incrementado su actividad en áreas estratégicas como son la innovación, tecnológica y sectorial.

El certamen orientó su programa congresual a la innovación y tecnología del sector siderúrgico, donde se han impartido más de una veintena de ponencias que concluyeron con una mesa redonda abierta a debate. En estas últimas han participado los principales clústers sectoriales y empresa del sector, quienes debatieron las conclusiones más destacadas de las ponencias.

La primera jornada ha estado dedicada a las soluciones que brinda el acero a los sectores de construcción, automoción, ferrocarril y energía. «En diferentes ponencias e intervenciones de panelistas en las mesas redondas se han presentado ventajas competitivas del acero frente a otros materiales», especificó Juan José Laraudogoitia, presidente del Comité Científico de Steel Tech y director de I+D de Sidenor. Durante la segunda jornada congresual se trataron temas como la automatización, digitalización y ciberseguridad, donde se mostró «la importancia del dato como elemento que sirve como materia prima para alimentar los algoritmos adecuados»; y aspectos como el medio ambiente, economía circular o reciclado: «Actualmente los esfuerzos se centran en que las industrias reciban las materias primas y consumibles para su procesado y, tras el proceso industrial solo salgan de nuestras unidades productivas nuevas materias primas para otras aplicaciones industriales o consumo final», concluyó Laraudogoitia.


En el área expositiva de STEEL TECH participaron empresas proveedoras de los diferentes niveles de la cadena de valor del sector siderúrgico, que dispusieron de un espacio expositivo de calidad en el que poder dar a conocer sus productos y servicios. Entre ellas destacaron firmas como Idom, Sarrale, Hidroambiente – Elecnor, Harsco Environmental, GH Cranes & Components, Tata Steel Layde, Jaso Industrial Cranes, GHI Smart Furnaces, Bonak Coil Processing Lines S.L o AMV Soluciones, entre otras. Las áreas de negocio representadas serán, principalmente, las de producción de acero, transformadores de acero en frío y caliente, fabricantes y distribuidores de maquinaria y equipos, componentes y repuestos, materias primas, centros de servicios, centros tecnológicos y otros servicios como gestores de residuos, grúas y limpieza maquinaria, entre otros.

Del mismo modo, Steel Tech ha combinado en un mismo espacio los innovation workshops y el área de networking. En esta última se han destacado los encuentros B2B, donde se han celebrado reuniones pre-concertadas entre expositores, patrocinadores e invitados VIP internacionales procedentes de países como Ecuador, India, Pakistán, Omán o Marruecos. Estas reuniones se han celebrado casi en su totalidad de manera presencial.

Asimismo, durante la noche del miércoles, día 20, se celebró la Gala Dinner, donde se realizó la entrega de los premios Steel Tech Awards. En ellos se reconoció la labor de la entidad Steeluniversity por haber contribuido a la promoción del sector siderúrgico en la categoría Communication Forum Award, así como a Hans-Willi Raedt, CEO de Prosimalys y experto en las tendencias actuales en la tecnología del acero para productor forjados, a quien se le reconoció su trayectoria profesional con la categoría Achievement Award. Durante el acto, Siderex reconoció la labor del grupo de empresas involucradas en Room4Steel, un espacio donde confluirá la formación, el reciclaje, proyectos y retos de las propias empresas. Además, Xabier Basañez entregó a Siderex una placa como reconocimiento a su 25 aniversario y a todas las personas y empresas que desde 1996 han estado involucradas en la brillante trayectoria de la asociación. «Sin duda, habéis posicionado a Siderex como gran referente del tejido empresarial en el sector siderúrgico», afirmó Basañez.

La primera edición de Steel Tech ha contado con SPRI como Partner Institucional, con la colaboración de UNESID- Unión de Empresas Siderúrgicas, y con el patrocinio platino de IDOM, oro de Sarralle y plata de Olarra, Tecnalia.

Entradas más antiguas «

Translate »