

SOSTENIBILIDAD

Un ejemplo en el Sector Cementero

VII Congreso Materias Primas

Oviedo - 19/Junio/2014

CEMENTO & SOSTENIBILIDAD

Objetivo de la Sostenibilidad

Ejemplo – Sector Cementero

C

Apuntes en el Sector Refractario

Objetivo SOSTENIBILIDAD

Satisfacer las Necesidades de la Sociedad

Actual sin Comprometer las de Generaciones

Futuras

Dimensiones:

Económica

Social

Medio Ambiental

CEMENTO & SOSTENIBILIDAD

1 Cemento como producto en la construcción

2 Producción de Cemento

3 Tendencias Futuras

CEMENTO COMO PRODUCTO EN LA CONSTRUCCIÓN

CEMENTO EN LA CONSTRUCION

El Cemento es un producto esencial, que cubre las necesidades de la sociedad en terminos de seguridad, confort en habitabilidad y fiables modernas infraestructuras.

Por extensión, esta definición no solo se aplica al cemento. También a hormigón y morteros y a los productos que con ellos se realizan.

CEMENTO EN LA CONSTRUCCION

Economic

Las estructuras basadas en el Cemento son soluciones sostenibles desde el punto de vista de las tres "esferas" de la sostenibilidad

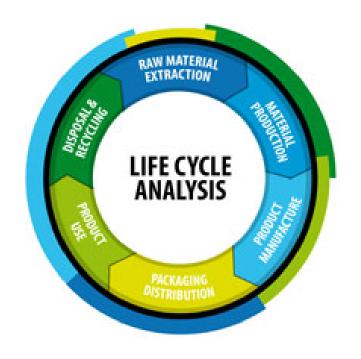
Environmental

Social

ASPECTOS ECONOMICOS

- El Cemento es un material universal de construcción "facil" de usar
- El Hormigón es el primer material de construcción a nivel mundial
- Las infraestructuras, principalmente realizadas con derivados del cemento, son esenciales para el desarrollo económico.

ASPECTOS SOCIALES


Cemento garantiza

Seguridad

- Viviendas confortables y robustas.
- Barreras de protección contra eventos extremos.
- Edificios esenciales para incrementar nuestra calidad de vida (hospitales, escuelas, ...).

ASPECTOS MEDIOAMBIENTALES

- Materiales de producción
- Construction
- Uso & Mantenimiento
- Demolición
- Eliminación & Reciclado

ASPECTOS MEDIOAMBIENTALES

- Las estructuras en hormigón tienen un menor coste de mantenimiento y uso (ciclo de vida).
- El consumo de energia en viviendas supone el 40% del consumo total en Europa.

Balance energético en el ciclo de vida de un edificio (50 años)

DemolitionMaintenanceUsageConstructionMaterials production

Source: K.Adelberth Lund University

Today Usage: 200 kWh/m² /year

12%

PRODUCCIÓN DE CEMENTO

PRODUCCIÓN DE CEMENTO

11. Cement dispatch (in bulk or bags) 10. Cement storage 6. Preheating tower 9. **CEMENT** mill (calciner) 8. Clinker storage Main Gypsum, Additions filter & additives 1. Raw materials (Quarries) 7. Kiln (CLINKER production) 3. Process inlet 2. Crushing 5. RAW MIX mill and silo 4. Prehomogenization halls (main raw materials)

KEY - POINTS SOSTENIBILIDAD

- Gran volumen de Materias Primas
- Alto consumo de energía electrica
- Alto consumo de combustibles
- Emisiones:
 - ✓ Gases de combustion, entre otras, emisiones de CO₂
 - ✓ Polvo
- Otros impactos: ruido, polvo difuso, reciclado de varios residuos.

GRAN VOLUMEN MATERIAS PRIMAS

CMI Horno 6: Requerimientos diarios		
CLINKER	4100 t	
Caliza	4900 t	
Arcilla	1350 t	
Arenisca	320 t	
Corrector Fe	160 t	

Residuos y sub-productos usados en plantas de cemento:

- Cenizas volantes
- Escorias (varios origenes)
- Arena de fundición
- Yeso "Industrial"

Best practice

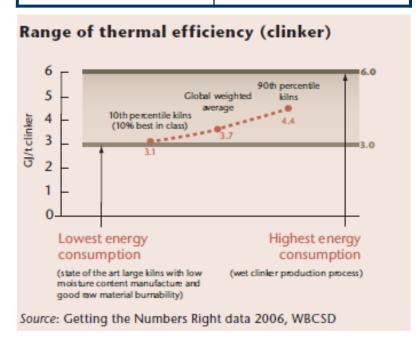
Substitución de materias primas por residuos o sub-productos

ALTO CONSUMO DE ELECTRICIDAD

Planta CMI: Consumo especifico (Valores promedios 2012)		
Clinker	69,25 kWh/t	
Cemento	103,48 kWh/t	

Use de tecnología de alta eficiencia para minimizar el consumo electrico

Best practice



ALTO CONSUMO DE COMBUSTIBLES

CMI plant: Consumo especifico (Valores promedio 2012)

Clinker 3,1 GJ/t

Best practice

ALTO CONSUMO DE COMBUSTIBLES

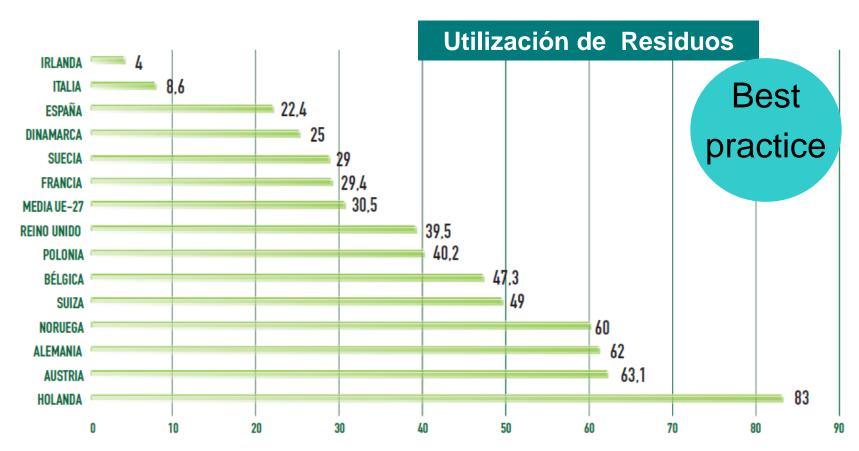
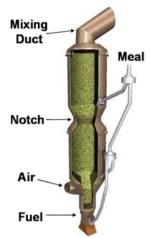
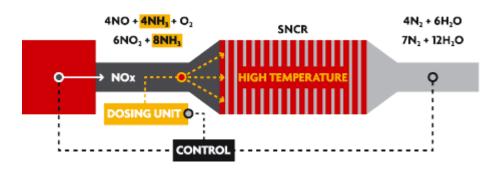


Gráfico 5: Grado de sustitución de combustibles fósiles por alternativos en la industria cementera de algunos estados europeos Fuente: Datos del WBCSD y Cembureau de 2010, salvo Irlanda y Suecia de años anteriores y España con datos de 2011.


EMISION: GASES COMBUST. Y POLVO


CMI plant: emisiones (mg/Nm³)		
	Limites	2012 Av.
NO _x	500	392
SO ₂	400	58
Polvo	20	1,9

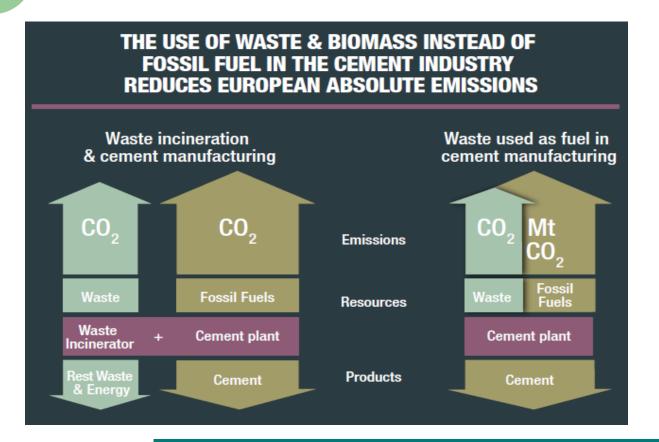
EMISION: GASES EFECT. INVERNADERO

La fabricación de Cemento conlleva la emisión inevitable de CO₂

Decarbonación de materias primas

Caliza: CaCO₃

Combustion


$$C_xH_y(N,S,...) + Aire$$

$$CO_2 + H_2O + (NO_x, SO_2, ...)$$

EMISION: GASES EF. INVERNADERO (CO2)

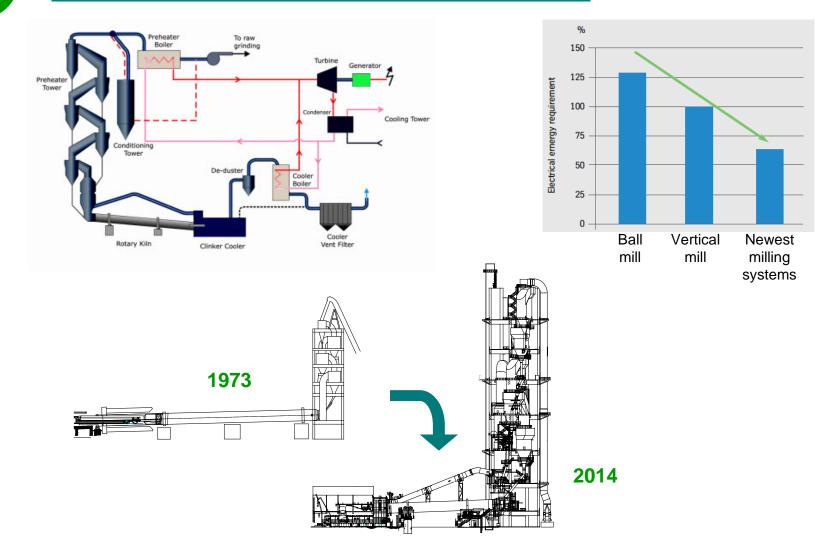
Best practice

•Uso de biomasa de residuos

Reducción de consumo combustilbes (BAT)

TENDENCIAS FUTURAS

TENDENCIAS FUTURAS


La industria del Cemento, como las Sociedad, evoluciona para incrementar su sostenibilidad en términos de producto y proceso productivo

También mejoran las tecnicas constructiva para aumenta la eficiencia energetica de los edificios.

- Industria del Cemento
 - BAT aplicació en proceso productivo (CCS)
 - Uso de residudos para Energía y Mat. Prima
 - Nuevos productos con mejores propiedades
- Investigación nuevos Sist.Constructivos
- Estandardización

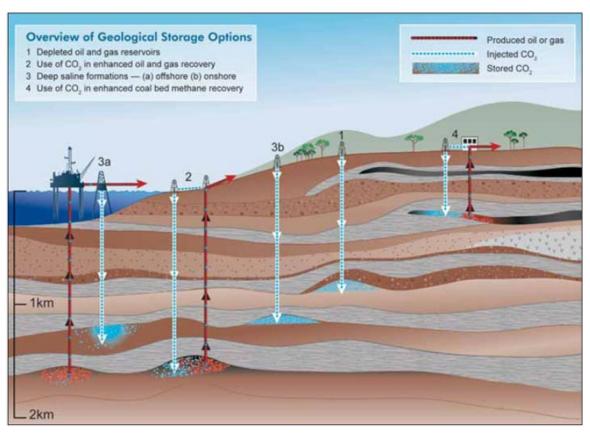
PROCESO PRODUCTIVO

PROCESO PRODUCTIVO (CCS)

- Carbon Capture and Storage es una tecnología emergente capaz de reducir el CO₂ emitido durante la producción del cemento.
- El sector cementero está trabajando en estas tecnologías

Oxy-fuel technologies

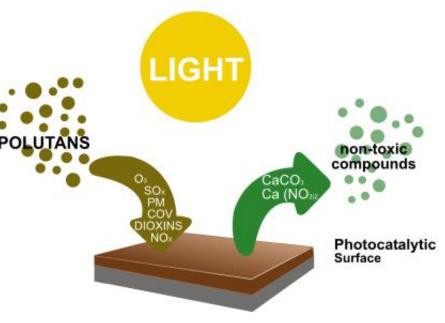
Elimina el nitrógeno de los gases utilizando oxigeno en lugar de aire durante la combustion.


Post-combustion technologies

Separa el CO₂ de los gases de combustión mediante ténicas de separación de gases (membranas, adsorción, absorción, ciclos carbonatación-decarbonatacion, ...)

Una vez separado el CO₂ se transporta hasta su lugar almacenamiento final.

- Oil and gas deposits
- Deep saline aquifers
- Deep coal seams
- Oceanic storage
- Mineral carbonation
- Industrial uses



NUEVOS PRODUCTOS

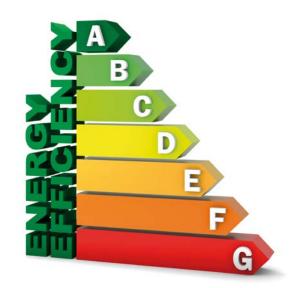
- Ultra-high strength
- Cemento como sumidero de CO
- Cementos "Self-cleaning"
- Cementos Foto-cataliticos
- Hormigones Translucidos

INVESTIGACION SISTEMAS CONSTRUCTIVOS

- Edificios con muros de hormigón externos para mayor inercia y eficiencia energética.
- Economico y de rápida construcción
- Facil de usar en vivienda social
- Bajo coste de mantenimiento y mas vida util (100 años)
- Ahorros en consumo electrico (25-33%)
- Reucción en emisión de CO₂ (110 t) durante la vida de servicio

www.echormigon.es

Prototipo ECHOR


STANDARDIZATION

DIRECTIVA 2010/31/EU

"Energy performance of buildings"

CEN/TC 350

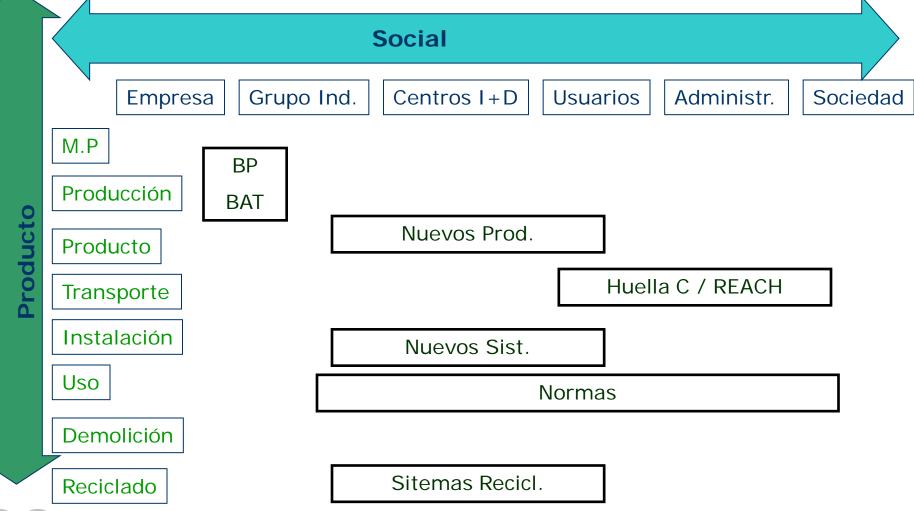
- EN 15804
 Environmental Product Declaration (EPD)
- EN 15978
 "Sustainability of construction works" (CEN/TC 350)

Apuntes para Sector Refractario

PRODUCTO

Economic

SOCIAL


Sustainable Solutions

Environmental

Social

Sector Refractario

Sector Refractario

Social

Empresa

Grupo Ind.

Centros I+D

Usuarios

Administr.

Sociedad

Individual

Colectivo

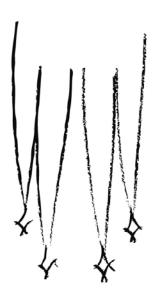
Investigación & Desarrollo Nomativativa y Standarización Comunicación

C

Sector Refractario

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung **Ceramic Manifesto**

34



Es el Refractario un sector sostenible?

Gracias por su atención

